Los estudios de casos y controles son un tipo de diseño habitualmente empleado en investigaciones clínicas que tienen por objeto la identificación de factores de riesgo. Si bien los estudios de cohortes reúnen las características idóneas para llevar a cabo este tipo de análisis, los estudios de casos y controles cuentan con la ventaja de que suelen exigir menos tiempo y ser menos costosos que aquellos.
Una de las características esenciales de los estudios de casos y controles, y su principal diferencia con los estudios de cohortes, es la forma de selección de los sujetos de estudio. En un estudio de cohortes se selecciona a los sujetos en base a su exposición. Por el contrario, en un estudio de casos y controles, se identifica a un grupo de personas con una enfermedad (casos) y se les compara con un grupo apropiado que no tenga la enfermedad (controles). Ya que los individuos son seleccionados en función de la presencia o ausencia del evento de estudio y no por su exposición, no podrá estimarse directamente el riesgo de enfermar entre los sujetos expuestos y los no expuestos. La relación entre uno o varios factores y la presencia de la enfermedad deberá estudiarse comparando la frecuencia de exposición entre los casos y los controles. Si la frecuencia de exposición es mayor en el grupo de casos que en los controles, podremos decir que hay una asociación entre la causa y el efecto.
En estudios de este tipo, la distribución de n sujetos estudiados según presenten o no la enfermedad y según su exposición a cada factor se puede mostrar en una tabla 2 x 2, similar a la Tabla 1: así, existirán en la muestra casos expuestos (a), casos no expuestos (c), controles expuestos (b) y controles no expuestos (d). Como medida de la frecuencia de exposición entre los casos se puede utilizar el cociente:
donde p1 es la probabilidad de exposición entre los casos. A partir de una muestra como la de la Tabla 1, Ω1 se puede estimar dividiendo los casos expuestos entre los casos no expuestos:
De modo similar, se valora la frecuencia de exposición entre los controles mediante el cociente:
donde p2 es la probabilidad de exposición entre los controles.
La medida más utilizada para cuantificar la asociación entre la exposición y la presencia de enfermedad es el "odds ratio" (OR) y su cálculo se estima mediante el cociente de las dos cantidades anteriores:
La interpretación del OR es la siguiente: si el OR es igual a 1, la exposición no se asocia con la enfermedad, mientras que si el OR es menor de 1 la exposición tiene un efecto protector (es decir, la exposición disminuye la probabilidad de desarrollar la enfermedad). Por último, si el valor del OR es mayor de 1, la exposición aumenta las posibilidades de desarrollar la enfermedad. De cualquier modo, las estimaciones del OR se deben realizar con su 95% intervalo de confianza para poder confirmar o rechazar la asociación de la exposición con la enfermedad.
Como se puede observar, el valor del OR puede obtenerse de la Tabla 1 multiplicando “en cruz” sus cuatro valores. De ahí que también reciba el nombre de “razón de productos cruzados”, o también “razón de ventajas”. Bajo suposiciones adecuadas, el OR puede ser un estimador adecuado de la razón de tasas de incidencia o del riesgo relativo, medidas habitualmente utilizadas para valorar la asociación entre una exposición y un evento. Cuando la frecuencia de exposición es reducida, el valor del OR y del riesgo relativo son muy similares.
Supongamos que se quiere llevar a cabo un estudio de casos y controles con el fin de determinar si existe una relación significativa entre la exposición a un factor y la presencia de una determinada enfermedad. A continuación se explica cómo calcular el tamaño de muestra necesario para contrastar la hipótesis de que el OR sea igual a 1.
Si se conoce la probabilidad de exposición entre los controles p2, y se prevé que el OR asociado al factor de estudio es w, el valor de p1, la frecuencia de exposición entre los casos, puede obtenerse fácilmente:
Como ejemplo, supongamos que se desea estudiar la existencia de una asociación entre el consumo de tabaco y el hecho de sufrir un infarto de miocardio. Para poner en evidencia dicha asociación y cuantificar su magnitud se diseña un estudio de casos y controles en el que se investigará el consumo de tabaco de una serie de pacientes que han padecido un infarto de miocardio (casos) y una serie de pacientes sanos (controles). Se cree que alrededor de un 40% de los controles son fumadores y se considera como diferencia importante entre ambos grupos un odds ratio de 4. Con estos datos, podemos calcular el tamaño de muestra necesario en cada grupo para detectar un odds ratio de 4 como significativamente diferente de 1 con una seguridad del 95% y un poder del 80%. De acuerdo con lo expuesto con anterioridad, conocemos los siguientes parámetros:
De acuerdo con estos datos, se estima que la frecuencia de exposición entre los casos vendrá dada por:
Esto es, se estima que aproximadamente un 73% de los casos son fumadores. Aplicando la Ecuación 1, se obtiene:
Es decir, se necesitaría estudiar a 35 sujetos por grupo (35 pacientes con infarto de miocardio y 35 controles) para detectar como significativo un valor del odds ratio de 4.
Si se reduce el tamaño del efecto a detectar, asumiendo que el odds ratio es aproximadamente igual a 3, se obtiene:
y, de acuerdo con la Ecuación 1, serían necesarios n=54 pacientes por grupo para llevar a cabo el estudio.
En algunos estudios, el investigador reune un número mayor de controles que de casos con el objeto de incrementar el poder estadístico. Supongamos que en el presente ejemplo se planea obtener dos controles por caso, y se asume que el odds ratio a detectar es aproximadamente igual a 3. Aplicando la Ecuación 2:
Por tanto, se necesitaría un grupo de n=40 casos (pacientes con infarto de miocardio) y m=2x40=80 controles para llevar a cabo la investigación.
El cálculo del tamaño de la muestra en los estudios de casos y controles debe formar parte del diseño metodológico del mismo, ya que la ejecución de este tipo de estudios es costosa. El iniciar un estudio sin conocer el poder estadístico y la seguridad para detectar diferencias, si es que existen, podría ser motivo de cometer un error de tipo II en el sentido de no detectar diferencias cuando realmente las hay.
Cálculos online